\begin{tabbing} crossed{-}pair\=\{i:l\}\+ \\[0ex](${\it es}$; ${\it ff}$; ${\it is\_req}$; ${\it is\_ack}$; ${\it sndr}$; ${\it rcvr}$; $r$; $a$) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=${\it ff}$.S(${\it sndr}$,${\it rcvr}$,$r$)\+ \\[0ex]\& ${\it is\_req}$($r$) \\[0ex]\& ${\it ff}$.S(${\it rcvr}$,${\it sndr}$,$a$) \\[0ex]\& ${\it is\_ack}$($a$) \\[0ex]\& ($\exists$\=${\it r'}$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it ff}$.R(${\it rcvr}$,$e$)\} \+ \\[0ex]$\exists$\=${\it a'}$:\{$e$:es{-}E(${\it es}$)$\mid$ ${\it ff}$.R(${\it sndr}$,$e$)\} \+ \\[0ex](${\it ff}$.Sender(${\it rcvr}$,${\it r'}$) = $r$ $\in$ es{-}E(${\it es}$) \\[0ex]\& ${\it ff}$.Sender(${\it sndr}$,${\it a'}$) = $a$ $\in$ es{-}E(${\it es}$) \\[0ex]\& es{-}causl(${\it es}$; $r$; ${\it a'}$) \\[0ex]\& es{-}causl(${\it es}$; $a$; ${\it r'}$))) \-\-\- \end{tabbing}